Quality Control of Trace Gas Observations

Martin Steinbacher

Empa, Laboratory for Air Pollution / Environmental Technology & GAW Quality Assurance/Scientific Activity Centre (QA/SAC Switzerland), Dübendorf, Switzerland

with contributions from NOAA-ESRL, ICOS & WCC-Empa

School of Atmospheric Measurements in Latin America and the Caribbean (SAMLAC) Puerto Rico, 12 November 2018

GAW Quality Management Framework

map of GAW stations

GAW Implementation Plan 2016-2023, GAW Report Nr. 228, 2017

GAW's Central Facilities – the Trace Gas Perspective

GAW Central Facilities

Variable	Quality Assurance / Science Activity Centre	Central Calibration Laboratory	World Calibration Centre	Regional Calibra- tion Centres	World Data Centre
CO2	JMA (Asia, South- West Pacific)	NOAA-ESRL	NOAA-ESRL (round robin)		AML
			cinpa (audits)		
CO ₂ Isotopes		MPI-BGC			AML
CH4	Empa (Americas, Europe, Africa)	NOAA-ESRL	Empa (Americas, Europe, Africa)		JMA
	JMA (Asia, South- West Pacific)		JMA (Asia, South- West Pacific)		
N ₂ O	UBA	NOAA-ESRL	KIT/IMK-IFU		JMA
SF_6		NOAA ESRL	KMA-KGAWC		JMA
CFCs, HCFCs, HFCs					JMA
Surface Ozone	Empa	NIST	Empa	OCBA (South America)	NILU
со	Empa	NOAA-ESRL	Empa		AML
VOCs	UBA	NPL (Ethane, Pro- pane, n-butane, n- pentane, Acetyle- ne, Toluene, Benzene, Isoprene) NIST (monoter- penes)	KIT/IMK-IFU		NILU
NO _x	UBA	NPL (NO)	FZJ (IEK-8) (NO)		NILU
SO2					NILU

GAW Implementation Plan 2016-2023, GAW Report Nr. 228, 2017

Propagation of the scale, from CCL to station

precision for > 425 approx. 0.25

Absolute Uncertainty; 0.1 µmol/mol

Internal consistency [325-425 µmol/mol]; 0.04 µmol/mol [2 sigma] [< 2 years]

https://www.esrl.noaa.gov/gmd/ccl/airstandard.html

Traceability

El Tololo - DMC, Empa

- make sure that you know your traceability chain
- add this information to your data / metadata

CO1 TITLE: CO hourly mean data CO2 FILE NAME: tll330s00.dmc empa.as.cn.co.nl.hr2014.dat CO3 DATA FORMAT: Version 1.0 CO4 TOTAL LINES: 8792 CO5 HEADER LINES: 32 CO6 DATA VERSION: 201505 CO7 STATION NAME: El Tololo CO8 STATION CATEGORY: Regional CO9 OBSERVATION CATEGORY: Air sampling observation at a stationary platform C10 COUNTRY/TERRITORY: Chile C11 CONTRIBUTOR: DMC Empa C12 LATITUDE: -30.17254 C13 LONGITUDE: -70.79923 C14 ALTITUDE: 2220 C15 NUMBER OF SAMPLING HEIGHTS: 1 C16 SAMPLING HEIGHTS: 5 C17 CONTACT POINT: martin.steinbacher@empa.ch gtorres@meteochile.cl C18 PARAMETER: CO C19 COVERING PERIOD: 2014-01-01 2014-12-31 C20 TIME INTERVAL: hourly C21 MEASUREMENT UNIT: ppb C22 MEASUREMENT METHOD: Cavity ring-down spectroscopy (CRDS) C23 SAMPLING TYPE: continuous C24 TIME ZONE: UTC C25 MEASUREMENT SCALE: WMO CO X2004 C26 CREDIT FOR USE: This is a formal notification for data users. "For scientific C27 and provided without charge. By their use you accept that an offer of co-author C28 with the data providers or owners whenever substantial use is made of their da C29 must be made to the data providers or owners and the data centre when these da C30 COMMENT: C31 DATE TIME C32 DATE TIME CO ND SD F CS REM 2014-01-01 00:00 9999-99-99 99:99 54.55 59 1.47 -9999 0 -99999999 2014-01-01 01:00 9999-99-99 99:99 54.72 60 1.41 -9999 0 -99999999 2014-01-01 02:00 9999-99-99 99:99 55.18 60 1.41 -9999 0 -99999999 2014-01-01 03:00 9999-99-99 99:99 56.24 60 1.40 -9999 0 -99999999 2014-01-01 04:00 9999-99-99 99:99 56.21 60 1.39 -9999 0 -99999999 2014-01-01 05:00 9999-99-99 99:99 56.03 60 1.66 -9999 0 -99999999 2014-01-01 06:00 9999-99-99 99:99 57.22 60 1.36 -9999 0 -99999999

Parameter Inventory	Parameter Metadata Station Contributor				
CH, CO- continuous	<u>CO₂</u> ^{⊥⊥} <u>O</u> ₃ [⊥] continuous continuous				
Observation Process	sing/Calibration Contact Person Reference Data/Quick Plot				
Current Scale	WMO CO X2004				
Scale and Calibration (traceability)	d the analyzer is regularly calibrated with four reference gases. All assigned mole fractions are reported on the WMO CO X2004 scale. The quality of the calibration is verified with a fifth reference gas (target cylinder).				
Measurement Calibration	Four calibration tanks are measured automatically every 2 to 9 days. Three of them are tanks purchased from the GAW Central Calibration Laboratory (NOAA ESRL), the mole fractions of the fourth tank are determined by the GAW World Calibration Centre for CH ₄ , CO ₂ , CO and surface O ₃ (WCC-Empa). WCC-Empa also assigned the mole fractions of an additional target cylinder that is measured every second day for quality control.				
Data Processing	Quality assurance procedures involve time series plots, target tank (i.e. cylinders containing natural air with assigned trace gas mole fractions that are treated as (unknown) sample in a sequence of analyses) measurements, and consistency checks.				
Processing for averaging	 Processing on hourly data : high-resolution data are aggregated to 1min averages before hourly averages are calculated. Thus, ND (the number of detections) refers to the number of available 1min averages within the respective hour. Processing on daily data : hourly averages are aggregated to daily means. Thus, ND (the number of 				
	detections) refers to the number of available hourly averages within the respective day. Processing on monthly data : daily data are aggregated to monthly means. Thus, ND (the number of detections) refers to the number of available daily averages within the respective month.				
Measurement Unit	ppb				
Flag					

Targeted compatibility for greenhouse gases within GAW

Recommended compatibility of greenhouse gas measurements

Component	Compatibility goal 1-sigma	Extended compatibility goal ¹	Range in unpolluted troposphere (approx. range for 2015)	Range covered by the WMO scale
CO ₂	± 0.1 ppm (North.Hem.) ± 0.05 ppm (So.Hemisph)	± 0.2 ppm	380 - 450 ppm	250 – 520 ppm
CH ₄	± 2 ppb	± 5 ppb	1750 – 2100 ppb	300 – 5900 ppb
СО	± 2 ppb	± 5 ppb	30 – 300 ppb	30 -500 ppb
N_2O	± 0.1 ppb	± 0.3 ppb	325 – 335 ppb	260 – 370 ppb
SF ₆	± 0.02 ppt	± 0.05 ppt	8 – 10 ppt	2.0 – 20 ppt
H_2	± 2 ppb	± 5 ppb	400 – 600 ppb	140 –1200 ppb
$\delta^{13}C$ - CO_2	± 0.01‰	± 0.1‰	-9.5 to -7.5‰ (VPDB)	
δ ¹⁸ O-CO ₂	± 0.05‰	± 0.1‰	-2 to +2‰ (VPDB-CO ₂)	
$\Delta^{14}C-CO_2$	± 0.5‰	± 3‰	-50 to 50‰	
$\Delta^{14}C$ - CH_4	± 0.5‰		50-350‰	
∆ ¹⁴ C-CO	± 2 molecules cm ⁻³		0-25 molecules	
δ ¹³ C-CH ₄	± 0.02‰	± 0.2‰	cm ⁻³	
δ D-CH ₄	± 1‰	± 5‰		
O ₂ /N ₂	± 2 per meg	± 10 per meg	-900 to -400 per meg (vs. SIO scale)	

18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (CGHT-2015) table CA. UA: 13-17 Symmetre 2019 CGGMT-2015 Report, GGAW Report Nr. 229, 2016

GAW Report No. 229

rule of thumb: internal reproducibility goals is one half the network compatibility goals

Typical plumbing design for CO2 observations

Shelter

ICOS Atmospheric Station Specification Document https://www.icos-ri.eu/documents/ATC%20Public

Frequency of calibrations depending on the time-scale of sensitivity changes of the analyzer

Calibration frequency for CO2 observations

Zellweger et al., AMT, 2016

"A thorough analysis of the CO2 and CH4 stability of [this type of cavity enhanced laser spectrometer] indicates that the optimal calibration frequency is approximately 30 h."

Calibration frequency for CO2 observations

SAMLAC, Puerto Rico, 12 November 2018

ICOS ATC (Atmospheric Thematic Center), screenshots

Round Robin Exercises for Greenhouse Gases

World Calibration Centre for Surface O3, CO, CH4, and CO2 (WCC-Empa)

- established in 1996, more than 90 audits since then
- ensures traceability to the GAW reference and determines compatibility
- assists stations with regards to instruments and measurement issues (WCC-Empa & QA/SAC-CH)
- improves technical know-how at stations through on-site training (WCC-Empa & QA/SAC-CH)

World Calibration Centre for Surface O3, CO, CH4, and CO2 (WCC-Empa)

World Calibration Centre for Surface O3, CO, CH4, and CO2 (WCC-Empa)

SAMLAC, Puerto Rico, 12 November 2018

🛢 Empa

Traceability for surface ozone measurements

- Each NIST Standard Reference Photometer (SRP) is a realisation of a Primary Standard
- CCL is NIST, which maintains SRP#2 (=reference for GAW), but SRP#X is also a primary standard
- The 'SRP family', which defines the O₃ reference, is inter-compared in an ongoing Key Comparison organized by BIPM (www.bipm.org)

Calibration (and auditing) of surface O3 analyzers

Reference: Standard Reference Photometer (SRP)

World reference: SRP #2 at National Institute for Standards and Technology

Currently: approx. 60 SRPs worldwide

Transfer standard / calibrator is calibrated against a reference photometer and used for the calibration of ozone instruments

Traceability chain:

Table 1 - Example of an uncertainty budget of an ozone analyser

Component (y)	Source	Distribution	Contribution to $u(x)$
Imperfect calibration / linearity	Comparison between TS and OA	Rectangular	0.0017· <i>x</i> *
Repeatability	Instrument stability	Rectangular	0.0016· <i>x</i>
Span drift	Instrument stability	Rectangular	0.0040· <i>x</i>
Zero drift	Instrument stability	Rectangular	0.17
Pressure P	Pressure measurement	Rectangular	0.0002· <i>x</i>
Temperature T	Temp. measurement	Rectangular	0.0005· <i>x</i>
H ₂ O interference	Interference in the UV		0.0060· <i>x</i>
Other interferences	Interference in the UV		0.6
Sampling loss (Inlet)	Inlet material, dirt	Rectangular	0.0014· <i>x</i>

* where x refers to ozone mole fraction

A conservative estimate of the total uncertainty can now be obtained by combing the uncertainties of the ozone analyser (13), the transfer standard (12) and the primary reference (11).

$$u(O_3) = \sqrt{(0.81)^2 + (0.0089 \times O_3)^2}$$
 nmol mol⁻¹

O3 measurement guidelines, GAW Report Nr. 209, 2013 Intercept vs. slope plot for 559 calibrations of various ozone analysers with transfer standards within the Swiss National Air Pollution Monitoring Network between November 2005 and April 2017

Tarasick et al., in prep.

SAMLAC, Puerto Rico, 12 November 2018

(14)

1990/01

2000/01

2010/01

source: WDCGG Data Summary 41, 2017 https://gaw.kishou.go.jp/

Comparison with other measurements

Fig. 7.2 Monthly mean mole fractions of CO from 1992 to 2015 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

Fig. 7.4 Average seasonal cycles of CO mole fractions for each 30° latitudinal zone obtained by subtracting long-term trends from the zonal mean time Error bars represent the range of $\pm 1\sigma$ series. calculated for each month. (period 1992 to 2015).

> source: WDCGG Data Summary 41, 2017 https://gaw.kishou.go.jp/

WORLD METEOROLOGICAL ORGANIZATION GLOBAL ATMOSPHERE WATCH

WORLD DATA CENTRE FOR GREENHOUSE GASE

ATMOSPHER

GAWDATA

Comparison with other measurements

Comparison with other measurements

Comparison with and use of models

SAMLAC, Puerto Rico, 12 November 2018

21

Training Opportunities

SAMLAC, Puerto Rico, 12 November 2018

GLOBAL ATMOSPHERE WATCH

Training Opportunities

Locación: IIDE	PROC; La Paz, Bolivia		Locación: IIDEPROC; La Paz, Bolívia					
Hora	Lunes	Martes	Miércoles	Jueves	Viernes			
08:00-10:00		Aerosoles SOP; peso de filtros en at- mosfera estándar; interpreta- ción	Gases raros Medida continuo de ozono, NQ, CO y SO2; venta- ja/desventajas de diferentes técnicas de medición	Análisis y filtración de datos Flujo de datos; automatiza- ción;	Discusión Discusión general de proble- mas frecuentes con las medi- das en la Red MoniCA			
10:00-10:30		Descanso	Descanso	Descanso	Descanso			
10:30-12:30		Aerosoles SOP; peso de filtros en at- mosfera estándar; interpreta- ción	Gases raros ventaja/desventajas de dife- rentes técnicas de medición	Análisis y filtración de datos Filtración de datos; venta- ja/desventaja de diferentes softwares	Repaso Puntos principales			
12:30-14:00	Almuerzo-bocadillo con lle- gada; bienvenida y presenta- ción de los participantes	Almuerzo	Almuerzo	Almuerzo	Almuerzo			
14:00-16:00	Ley, Razón, Salud: Porque tenemos que hacer medidas	Visita del IIDEPROC Práctica en las temas de cali- bración y manutención de los aparatos	Gases raros (*) Calibración; Estándar de ga- ses de calibración; jerarquía de gases de calibración	Análisis y filtración de datos (*) Filtración de datos; automati- zación y labor manual	Excursión estación GAW Chacaltaya Partida ~ 13:30 Llegada ~19:00			
16:00-16:30	Descanso		Descanso	Descanso				
16:30-19:00	Medidas con el método pa- siva Intercomparación acti- va/pasiva; Procedimientos operativos estándar (SOP); Análisis		Gases raros (*) Manipulación de botellas de gas de calibración	Anállsis y filtración de datos (*) Visualización;				

(*) Con ejercicios

airelimpio

Capacitación de CATCOS a la red MoniCA

October 2015

Curso de formación sobre Monitoreo de la calidad del aire urbano en Bolivia

Técnicos de la Red MoniCA capacitados por el EMPA

Recientemente, se llevó a cabo el Curso de formación sobre Monitoreo de la calidad del aire urbano en Bolivia, para técnicos de la Red MoniCA (Red de Monitoreo de Calidad de Aire), en la ciudad de La Paz, del 12 octubre al 16 octubre. El curso tuvo como objetivo fundamental mejorar la comprensión y fomentar el conocimiento de los técnicos que trabajan día a día para la Red MoniCA Bolivia, estuvo a cargo de dos expertos en medición de calidad del aire, del Laboratorio Suizo Federal de Ciencia de los Materiales y Tecnología (EMPA).

El curso fue organizado dentro del Programa Fomento de Actividades y Coordinación dentro de la Red MoniCA. Se inició con una introducción con los ajustes de las medidas en Bolivia, en un contexto más amplio, se prosiguió con el marco legal, los efectos adversos de la contaminación atmosférica en la salud del hombre y los ecosistemas, como así también la definición de los límites de calidad del aire. También, se realizaron presentaciones y discusiones de las técnicas de medición activas y continúas más avanzadas para los aerosoles y los qases.

Se instruyó a los técnicos en el manejo de una herramienta computacional de procesamiento de datos que realiza un primer

J. G. Anet, M. Steinbacher

traducción simultánea del inglés al español. A pesar de este inconveniente, a menudo, las sesiones terminaron en discusiones animadas y no en largas charlas de los ponentes. Muchos participantes compartieron temas específicos de sus estaciones con el fin de discutirlos en la sesión plenaria, haciendo el curso aún más beneficioso para todos. Además los momentos de descanso y el almuerzo fueron ampliamente utilizados para continuar la discusión específica en grupos más pequeños.

Durante los debates, se identificaron algunas deficiencias en la Red MoniCA y se desarrollaron estrategias para superar estas deficiencias en el futuro. Se prestará especial atención a la reformulación y la aplicación de los procedimientos de operación están dar. La falta de una infraestructura adecuada como ser; una fuente fiable de alimentación eléctrica o la conexión a Internet en algunas estaciones de medición, deben ser objeto de mejora en el futuro.

Conclusiones

El Curso de formación sobre Monitoreo de la calidad del aire urbano en Bolivia fue muy exitoso, se logró desnudar ciertas falencias técnicas, fortalecer los conocimientos existentes y promover nuevas habilidades del personal de Red MoniCA. Aunque el curso fue relativamente corto, la retroalimenta-

Training Opportunities

Previous Courses Schneefernerhaus Application

https://www.gawtec.de/

two courses per year

Global Atmosphere Watch -Training & Education Centre

Implementation of new measurements in South America

in April 2013, measurements are still ongoing

Implementation of new measurements in South America

in April 2013, measurements are still ongoing

measurement station

Capacity Building and Twinning for Climate Observing Systems

- Central Facilities are assigned for most of the trace gases targeted in GAW
- Traceability chains and network wide quality control activities are in place
- A wide range of data from observations and models are available online
 - > make use of it !
 - > profit from training opportunities and potential collaborations

Station setup and operation

