Chemical characterization of atmospheric aerosol: mass closure

die

The European Commission's science and knowledge service

Joint Research Centre

32

se la companya de la

European Commission

The European Commission's science and knowledge service

Joint Research Centre

Chemical characterization of atmospheric aerosol: mass closure

J.P. Putaud Dir. for Energy, Transport and Climate Air & Climate Unit

The Joint Research Centre at a glance

3000 staff

Almost 75% are scientists and researchers. Headquarters in Brussels and research facilities located in 5 Member States.

The determination of particulate matter mass and constituents' concentrations often implicates:

1. The collection of particles on a substrate \Rightarrow sampling artifacts

2. Subsequent analytical measurements \Rightarrow possible analytical biases

Testing "mass closure" is a powerful tool to assess measurement quality.

PM mass concentration is the aerosol related variable submitted to regulations:

- USA: annual $PM_{2.5}$ standard = 12 µg/m³, 24-hour $PM_{2.5}$ standard = 35 µg/m³.
- Mexico: annual $PM_{2.5}$ standard = 12 µg/m³, 24-hour $PM_{2.5}$ standard = 45 µg/m³.
- Brazil: annual PM_{10} standard = 50 µg/m³, 24-hour $PM_{2.5}$ standard = 150 µg/m³.
- EU: annual $PM_{2.5}$ standard = 25 µg/m³, 24-hour PM_{10} standard = 50 µg/m³.

Particulate matter mass concentration determination:

- Gravimetric analyses (recommended):
 - micro-balance with sufficient sensitivity (< 1 μ g)
 - equilibration of the sample with the measurement enclosure conditions \rightarrow 24 hr @ RH = 20 ±5% (NB: European EN12341: 24 hr @ 45% RH)
 - electrostatic charges on filters to be removed \rightarrow corona discharge or radioactive source.
- On-line methods (if equivalence with gravimetric methods has been proven):
- TEOM (Tapered Element Oscillating Microbalance)
- β -ray attenuation instruments

PM mass concentration: effect of RH on gravimetric analyses

Particulate matter chemical composition:

- 1. water soluble: inorganic ions + soluble organics
- 2. volatile and / or oxidisable to CO_2 : carbonaceous matter
- 3. refractory: mineral species and elements

Particulate matter chemical composition determination: water soluble ions

- extraction: 97 100% after 30 min US bath if filter kept below the water surface
- take care of contamination
- bacteria "eat" NH₄+
- ion chromatography
- capillary electrophoresis

Particulate matter chemical composition: organic matter speciation

Chemical mass balance in impactor stage 0.14 - 0.42 um in Melpitz (Neusuess et al., 2000)

Particulate matter chemical composition: water soluble carbon determination

Particulate matter chemical composition determination: carbonaceous content

Volatilisation and / or combustion to CO₂

- lack of precise definition of atmospheric EC (split?)
- conversion of OC to EC during analyses (charring) must be accounted for.

Particulate matter chemical composition: mineral species and elements

- total mineral mass: ashing ashless filter + weighing
- elemental composition
 - XRF Non-Dispersive X-ray Fluorescence Spectrometry.
 - INAA Instrumental Neutron Activation Analysis.
 - PIXE Proton Induced X-ray Emissions Spectrometry.
 - EXAFS Extended X-ray Absorption Fine Structure Spectroscopy
 - ICP/AES Inductively Coupled Plasma with Atomic Emission Spectroscopy
 - ICP/MS Inductively Coupled Plasma with Mass Spectroscopy
 - AAS Atomic Absorption Spectrophotometry.
 - + Several others

Reliability and limitation of analytical procedures

1. Detection limit

The method detection limit is the smallest atmospheric concentration which can be distinguished from the blank's contribution:

 $MDL = t \sigma / V$

t = the Student's t value at e.g. 99% confidence level with n-1 levels of freedom (n = nb of blanks)

 σ = std deviation of replicate analyses of blanks

V = air sample volume

- 2. Precision
 - based on replicate determinations (repeatability)
- 3. Accuracy
 - needs certified standards (e.g. NIST, JRC)
 - interlaboratory comparison robust averages often used as assigned values (reproducibility)

Elemental analyses: minimum detection limits

Species	Minimum detection limit in ng/m ³					
_	ICP/AES	AA Flame	AA Furnace	INAA	PIXE	XRF
Ве	0.06	2	0.05	NA	NA	NA
Na	NA	0.2	0.005	2	60	NA
Mg	0.02	0.3	0.004	300	20	NA
AI	20	30	0.01	24	12	5
Si	3	85	0.1	NA	9	3
P	50	100000	40	NA	8	3
Si	10	NA	NA	6000	8	2
CI	NA	NA	NA	5	8	5
к	NA	2	0.02	24	5	3
Ca	0.04	1	0.05	94	4	2
Sc	0.06	50	NA	0.001	NA	NA
Ti	0.3	95	NA	65	3	2
V	0.7	52	0.2	0.6	3	1
Cr	2	2	0.01	0.2	2	1
Mn	0.1	1	0.01	0.12	2	0.8
Fe	0.5	4	0.02	4	2	0.7
Co	1	6	0.02	0.02	NA	0.4
Ni	2	5	0.1	NA	1	0.4
Cu	0.3	4	0.02	30	1	0.5
Zn	1	1	0.001	3	1	0.5
Ga	42	52	NA	0.5	1	0.9
As	50	100	0.2	0.2	1	0.8
Se	25	100	0.5	0.06	1	0.6
Br	NA	NA	NA	0.4	1	0.5
Rb	NA	NA	NA	6	2	0.5
Sr	0.03	4	0.2	18	2	0.5
Y	0.1	300	NA	NA	NA	0.6
Zr	0.6	1000	NA	NA	3	0.8
Mo	5	31	0.02	NA	5	1
Pd	42	10	NA	NA	NA	5
Ag	1	4	0.005	0.12	NA	6
Cd	0.4	1	0.003	4	NA	6
In	63	31	NA	0.006	NA	8
Sn	21	31	0.2	NA	NA	8
Sb	31	31	0.2	0.06	NA	9
In	NA	NA	NA	1	NA	NA
Cs	NA	NA	NA	0.03	NA	NA
Ba	0.05	8	0.04	6	NA	25
La	10	2000	NA	0.05	NA	30
Au	2.1	21	0.1	NA	NA	2
На	26	500	21	NA	NA	1
TI	42	21	0.1	NA	NA	1
Pb	10	10	0.05	NA	3	1
Ce	52	NA	NA	0.06	NA	NA
Sm	52	2000	NA	0.01	NA	NA
Eu	0.08	2000	NA	0.006	NA	NA
L C. Hk	16	2000	NA	0.01	NA	NA
Та	26	2000	NA	0.02	NA	NA
Ŵ	20	1000	NA	0.02	NA	NA
Th	63	NA	NA	0.2	NA	NA
ii I	21	25000	NA	0.01 NA	NA	1
	21	20000	1974	11/1	11/1	

NA: not available Based on 30 m³ samples collected on 47 mm filters European

Commission

Chemical mass closure:

sum of the quantified aerosol components' concentrations vs independently measured PM mass concentration

15

Chemical mass closure:

sum of the quantified aerosol components' concentrations (**c**_i) vs independently measured PM mass concentration (**C**)

$$\sum_{i.e.} \mathbf{c}_{i} = \mathbf{C}$$

i.e.
$$|\sum_{i} \mathbf{c}_{i} - \mathbf{C}| < \mathbf{S}(\sum_{i} \mathbf{c}_{i} - \mathbf{C})$$

where \mathbf{S} = uncertainty of the difference

Law of propagation of errors (independent variables x_i): $S^2(f(x_1,...,x_i,...,x_n)) \approx \sum(\partial f/\partial x_i)^2 S^2(x_i)$ where $S(x_i) =$ uncertainty of the (measured) variable x_i

Applied to mass closure (assuming that c_i and C are independent variables): $S^2(c_1+c_2+...+c_n - C) \approx S^2(c_1)+S^2(c_2)+...+S^2(c_n)+S^2(C)$

Chemical mass closure exercise output:

Even if ions, OC, EC, dust (i.e. sum of refractory species) and total mass are measured accurately from a single filter, reasons why $\sum ci < C$ can be:

- water, contributing to the aerosol mass, has not been measured.
- the organic-mass-to-organic-carbon ratio is underestimated.

Even if mass closure is satisfactory (*i.e.* $\sum ci = C$ within uncertainties), this does not mean anything about sampling artifacts if components' and total mass concentrations have been measured from a single filter.

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: EU Science Hub

